
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 3, NO. 6, DECEMBER 2009 379

NeuralWISP: A Wirelessly Powered
Neural Interface With 1-m Range

Daniel J. Yeager, Member, IEEE, Jeremy Holleman, Richa Prasad, Joshua R. Smith, Member, IEEE, and
Brian P. Otis, Member, IEEE

Abstract—We present the NeuralWISP, a wireless neural inter-
face operating from far-Þeld radio-frequency RF energy. The Neu-
ralWISP is compatible with commercial RF identiÞcation readers
and operates at a range up to 1 m. It includes a custom low-noise,
low-power ampliÞer integrated circuit for processing the neural
signal and an analog spike detection circuit for reducing digital
computational requirements and communications bandwidth. Our
system monitors the neural signal and periodically transmits the
spike density in a user-programmable time window. The entire
system draws an average 20 A from the harvested 1.8-V supply.

Index Terms—Brain machine interface, neural data acquisi-
tion, neural telemetry, radio-frequency identiÞcation (RFID),
singleÐunit recordings, wireless sensor.

I. INTRODUCTION

N EURAL interfaces have made tremendous tech-
nology-driven advances in the recent past. Cochlear

implants are an early example of clinically relevant implantable
devices [1], modern electronics are enabling previously impos-
sible brain-research experiments [2], and major progress has
been made toward neurally controlled prosthetics [3]. Since
transcutaneous wiring poses a signiÞcant infection risk, it is de-
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commercial ultra-high frequency (UHF) radio-frequency-iden-
tiÞcation (RFID) reader. The system operates at a distance of
up to 1 m from the reader. It records the spike count in a pro-
power, general-purpose microcontroller

for sensing, com-
putation, and RFID communication. The use of a programmable

allows WISP to be easily conÞgured for different applica-
tions, including measurement of temperature, light level, strain,
and acceleration [6]. These environmental sensor signals change
slowly and, thus, permit periodic, low-frequency (1 to 50 Hz)
measurement. However, a much faster sampling rate (at least 8
kHz) is necessary to detect neural spikes due to spectral content
between 500 Hz and 2 kHz.

Achieving an 8-kHz sampling rate under the constraints of the
limited power budget of an RFID tag is not possible with gen-
eral-purpose microcontrollers available today. Instead, a con-
analog spike detector in addition to an analog-to-digital con-
verter (ADC) integrated in the

. The performs the con-
trol and timing tasks, and implements the RFID communication
protocol.

A. Power and Communication

NeuralWISP receives all of its power from the RFID reader.
Commercial off-the-shelf (COTS) UHF RFID readers oper-
ating in the U.S. industrial-scientiÞc-medical (ISM) band (902
MHz to 928 MHz) are limited in transmit power to the Federal
Communications Commission (FCC) limit of 1 W (30 dBm).
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Fig. 1. Block diagram of NeuralWISP.

Fig. 2. Measured rectiÞer output power and efÞciency versus input power. Es-
timating received power using FriisÕ Transmission Equation, an input power of
� 2.3 dBm corresponds to 1-m range for a typical UHF RFID system.

Readers often use an 8-dBi circularly polarized patch antenna,
which has an approximate 60beam width. Tags typically
employ a 2-dBi dipole antenna. However, a number of factors
decrease the power available to the tag. The most signiÞcant
effect is path loss. FriisÕ Transmission Equation predicts that the
amount of power received decreases with the square of wireless
range. The circularly polarized reader antenna in conjunction
with a (linearly polarized) dipole tag antenna also incurs 3-dB
polarization loss. In addition, amplitude modulation (AM) in
the downlink (reader-to-tag) and backscatter modulation in the
uplink (tag-to-reader) communication causes up to 3-dB loss.
Finally, tag rectiÞer efÞciency, shown in Fig. 2, of about 25%
causes 6-dB loss. All included, 427W ( 3.7 dBm) is available
after the rectiÞer at 1 m. Implantation causes additional losses
due to dielectric constant mismatch at the air-tissue interface;
however, experiments have demonstrated the feasibility of
radiative power transfer in this regime [8].

The power and communication circuitry, shown in Fig. 3, are
similar to that of conventional RFID tags, and [7] presents the
design in detail. A Þve-stage voltage-multiplying rectiÞer con-
verts the received RF signal from the reader into an unregu-
lated voltage source for the tag, which is stored on .
An L-match network transforms the tag impedance to match
that of the antenna. The harvested voltage is converted to 1.8 V
by a low-drop-out linear regulator with 1-A quiescent cur-
rent, which provides a stable supply voltage for the system. The

Fig. 3. Schematic of the RF front end including voltage-multiplying rectiÞer,
modulator, demodulator with level shifter (LS), and voltage supervisor (SV).
RF (low capacitance) Schottky diodes are Þlled black, and dc (low leakage)
Schottky diodes are Þlled white. Also shown is the 1.8-V regulator, providing a
stable supply for the rest of the system.

voltage supervisor provides a digital interrupt to wake the mi-
crocontroller while waiting for sufÞcient energy to operate.

NeuralWISP communicates by using the EPC Class 1
Generation 2 RFID protocol [9], allowing compatibility with
industry-standard COTS readers. Downlink (reader-to-tag)
communication is accomplished through reader AM. The de-
modulator employs a comparator to threshold the instantaneous
received voltage against the average (minus a diode drop).
A footer transistor disables the comparator to save 10A of
quiescent current while communication is not needed. Uplink
(tag-to-reader) communication is accomplished by modulation
of the tag reßection coefÞcient. The modulator uses an RF tran-
sistor to short the antenna terminals together, thereby producing
a strong reßected signal. In the worst case, approximately half
of the nominal power is available to the tag due to reader AM
and tag reßection modulation. Note that tag ID and memory
communication errors are minimized through use of a 16-b
CRC. Further details on the protocol can be found in [9].

B. Analog Signal Path

The extremely low signal levels recorded from neural probes
place severe constraints on the analog front end. Input-referred
noise levels must be while providing good lin-
earity and high gain. These requirements frequently result in the
low-noise neural ampliÞer consuming a majority of the system
power. In the NeuralWISP, the power dissipation limits the wire-
less range, so power must be minimized. We designed a custom
low-noise ampliÞer (LNA) in a 0.5-m SOI BiCMOS process
to meet these requirements. The ampliÞer is designed to provide
40-dB gain. A schematic is shown in Fig. 4.

The ampliÞer is built by using a two-stage op-amp with ca-
pacitive feedback, shown in Fig. 4(b). The midband gain is set to
100 by the ratio of the and , which are 20 pF and 200 fF, re-
spectively. Sizing the input capacitor presents a tradeoff be-
tween noise performance and chip area. Since large input tran-
sistors are used to minimize noise, the op-amp input ca-
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Fig. 6. Software state diagram. The �� is in the low-power Spike State for
the majority of the time, awakening only to increment the spike counter after a
detection or to communicate with the reader.

The signal is low-pass filtered with a time constant of 0.1 s
to generate the detection threshold. Deriving the threshold from
the amplified signal prevents any offsets in the opamps from
corrupting the detection results. The signal is also shifted to-
ward 0 V and attenuated by up to 15% via a variable-ratio resis-
tive divider. A digitally controlled resistor, variable from

k , determines the attenuation of the divider and thus the
sensitivity of the spike detector. The shifted signal is compared
to the low-pass-filtered signal to generate the detection signal,
which triggers an interrupt in the . The spike detector’s pro-
grammable threshold is set by the to a level stored in flash
memory. The threshold level can be chosen by the user prior to
deployment. Firmware control of the threshold also allows for
future implementation of real-time adjustments to the threshold.
These adjustments could be made based on the observed input
or by including adjustment commands in the data sent from the
reader to the NeuralWISP.

The output of the second amplifier is also connected to the
ADC input of the MSP430 microcontroller to allow for direct
digitization of the neural signal. The ADC has 10-b resolution
and uses the supply as the reference. This provides a 1.76-mV
LSB, or 1.76 V input-referred.

C. Digital Control

An MSP430F2274 microcontroller is used to imple-
ment control, timing, and communication tasks. Fig. 6 shows
the software architecture. On bootup, the configures the
adjustable resistor in the spike detector. During the primary
mode of operation, the will count spikes during a user-spec-
ified time interval (typically 1–10 s) and transmit the number of
spikes detected at the end of the interval. During the counting
interval, the is in a low-power sleep state for the majority of
the time. The spike detector triggers an interrupt, which causes
the to wake up, increment the spike count, and return to
sleep. A timer drives another interrupt, which signals the end of
the counting interval, causing the to exit the spike-counting
mode and await a communication session with the reader. After
communicating with the reader, the pauses for 3 s to allow
the analog circuits to recover from RF interference that occurred
during the read, then returns to the spike counting phase and re-
peats the cycle.

Fig. 7. Graphical user interface processes data from an Impinj Speedway RFID
reader, displaying a graph of spike detections versus time.

D. Application Layer

A graphical user interface was developed to read, graph, and
log spike density measurements reported by the NeuralWISP
to the RFID reader. The application communicates via Ethernet
using a low-level reader protocol (LLRP) [16]. A screen capture
of the application in action is shown in Fig. 7.

The state cycle for the application begins by polling the
reader until the NeuralWISP powers up and reports a spike
count. Then, the application turns off the reader for a pre-
determined spike sampling period, which is set in the code
of the NeuralWISP and in the application. During this time,
the NeuralWISP counts spikes. After the sampling period has
ended, the application again polls the reader. The NeuralWISP
recharges and reports its spike count. The cycle then repeats.
Note that the application stays synchronized with the Neural-
WISP’s charge-record-upload state cycle by waiting for the
WISP to respond in the upload state. This ensures that timing
errors do not accumulate over several iterations of the state
cycle.

III. TEST RESULTS

The fabricated board is shown in Fig. 8. The populated board
alone weighs 1.0 g, and a 900-MHz wire dipole antenna (not
shown) weighs approximately 0.6 g. During spike counting, the
system draws an average of about 20 A of current from its
unregulated supply, of which 8 A is consumed by the neural
LNA. A commercial RFID reader with 30-dBm transmitted
power was used to wirelessly supply power and communicate
with the NeuralWISP.

A. Analog Front End

The amplifier’s noise was measured by using an HP 35670A
dynamic signal analyzer with the input grounded. Fig. 10 shows
the input-referred noise spectra at the output of the LNA and
the post-amp, which was integrated from 0.5 Hz to 25 kHz and
divided by the measured gain to find the input-referred rms noise
voltage, which is 4.4 for the LNA. Even with the use of
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Fig. 14. Single spike digitized by the onboard ADC. The �� began sampling
and converting in response to an interrupt from the spike detector.

Fig. 15. In-vivo experiment setup showing a Manduca Sexta moth with tung-
sten wire electrodes in wing muscle tissue. The electrodes are connected to the
NeuralWISP via a resistive attenuator. Spike density measurements are wire-
lessly recorded and communicated to the RFID reader.

NeuralWISP relies on extremely low-power custom analog
front-end circuitry to allow operation from a wireless power
source. In order to test the compatibility of the analog front end
with an extra-cellular neural recording, we performed in vivo
measurements on a macaque monkey (Macaca nemestrina).
Fig. 17(a) shows spikes recorded with the NeuralWISP LNA
and postamplifier, digitized with a standard rack-mounted
acquisition system, and high-pass-filtered offline. The clean
grouping of the spikes demonstrates that the NeuralWISP’s
analog front end has compatible input impedance and sufficient
linearity to allow accurate recording of small neural signals in
the presence of 60-Hz interference and local field potentials.

Fig. 17(b) shows the same spikes without the high-pass
filtering. A combination of 60-Hz interference and low-fre-
quency field potentials causes the spikes to be superimposed
on a varying baseline level, complicating detection. For use in
situations with significant low-frequency interference similar to
that shown here, future systems should incorporate additional
high-pass filtering. Fortunately, this filtering (and additional

Fig. 16. Wirelessly powered data from wing muscle tissue captured over a
2-s timespan by an oscilloscope. The top trace shows the postamplifier output,
which corresponds to approximately 2.4 mVpp at the input. The bottom trace
shows the NeuralWISP spike detector output.

Fig. 17. Spikes recorded through the NeuralWISP’s amplifiers and digitized
with standard rack-mounted recording equipment. (a) High-pass-filtered spikes
line up well. (b) Unfiltered data indicate a significant variation in the baseline.

gain, if desired) can be easily implemented at a negligible cost
in power using micropower opamps such as the one used for
the postamp described before.

IV. DISCUSSION

There are a number of tradeoffs in the design of wirelessly
powered neural recording systems. Some involve the use of
the RFID protocol. RFID is a relatively mature technology,
which provides a robust communication layer and low-cost (ap-
proximately U.S.$1000) interrogators. This enables wide-scale
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deployment as well as collaboration with other researchers.
Conversely, RFID technology was designed for reading many
nodes once. In sensing applications, the goal is often to read one
node repeatedly. This repurposing of the protocol constrains
data throughput due to increased overhead. For example, the
Gen2 protocol limits the query rate for 96-b tag IDs to about
1 kHz, which results in a maximum theoretical throughput
of 100 kb/s. Reading tag memory increases throughput but
decreases the tag-access rate to about 360 Hz for multibyte
memory access. These estimates are based on 160-kb/s down-
link and 640-kb/s uplink with preamble overheads, even bit
distributions, and a single tag present (no singulation) [9].
However, NeuralWISP in its current implementation does not
approach theoretical limits due to duty cycling of the reader.
SpeciÞcally, 96 b are sent at an interval of 8-s plus tag charging
time, which depends on the distance to the reader. At 1-m
range, the charging time is approximately 3 s and, thus, the total
period is 12 s. This low data rate necessitates a much distilled
report of the recorded neural data, and at present, a spike count
is reported.

Radiative energy transfer also has a number of tradeoffs.
Advantages include the ability to power many nodes with one
reader and transfer power over many wavelengths of distance
(wavelength 0.33 m for UHF RFID). Limitations
on the number of nodes include shadowing (where one node
blocks the reader signal from reaching a second node) and
detuning (nodes in close proximity may detune the frequency
band they are sensitive to). However, compared to other ap-
proaches, such as inductive coupling, radiative energy transfer
enables operation at a much greater range. Disadvantages
include low-power transfer efÞciency and the necessity of an
antenna on the scale of the RF wavelength. Low-power transfer
efÞciency, in turn, limits the features of the nodes due to power
constraints. However, reductions in power consumption due to
technology scaling are enabling increased functionality for the
same power budget.

Finally, while one reader may power many tags, multiple
readers in close proximity must time-multiplex. This is due to
the tag demodulator design: simple peak detection lacks the
ability to perform channel selection. Therefore, tags cannot se-
lectively listen to one reader while other readers are transmitting
simultaneously. This effectively means that tags in close prox-
imity must share the communication bandwidth of one reader.
Spike sorting, binning, and other forms of signal processing will
allow maximum information to be gathered from a collection of
nodes under the limited bandwidth constrains of one reader.

Wireless neural sensing inherently places an RF transmitter
in close proximity to the signal to be detected. While pickup of
60-Hz noise can be greatly reduced due to the sensor being wire-
lessly interrogated, the radio can introduce interference in the
measurement. In this paper, we separated the sensing and com-
munication temporally, which places time gaps in the recording.
In order to sense and communicate simultaneously, several tech-
niques may help eliminate RF interference. First, integration of
the electrodes, ampliÞers, and spike detection circuitry to a size
well below the RF wavelength helps prevent the electrodes from
acting as an antenna. Second, integration of RF ejection Þlters in
the signal path helps eliminate noise picked up by the electrode.

Finally, shielding of the LNA and Þlters helps reduce direct in-
terference from the ampliÞer.

As the NeuralWISP is currently conÞgured, it measures spike
density in a time window of a few seconds. While this is not
the typical protocol for neuroscience experiments, it provides
an indication of the activity level of the neuron being observed.
This can provide useful information about sleep-wake state [23].
Simple measures of neural activity levels can also be used to
gauge recovery from brain insult, such as that due to cardiac ar-
rest. In [24], EEG was used to measure activity, but spike density
could serve as another indicator. With additions to the Þrmware,
even the modest data rate supported by the RFID protocol would
allow other information to be transmitted, such as histograms of
interspike intervals or spike amplitudes.

NeuralWISP enables a variety of interesting applications in-
cluding monitoring of small animals and insects in laboratory
environments as well as implantable neural sensors provided the
device size is reduced through application-speciÞc integrated-
circuit (ASIC) integration. Similar applications for monitoring
heart rate, blood sugar, blood pressure, etc. could leverage this
technology by applying it to other biomedical sensors.

V. CONCLUSION

We have demonstrated a wirelessly powered neural interface
with a range of 1 m. Using harvested RF power, the NeuralWISP
transmits spike counts to a commercial RFID reader at user-
programmable intervals. In addition to testing with simulation
data,in-vivo measurements with a Manduca Sexta moth and
macaque monkey validated the feasibility of this system in real-
world conditions.

By operating from a wireless power source, the NeuralWISP
allows indeÞnite operation without the need to change batteries,
a critical need for implanted neural interfaces. The platform
is also ßexible and can be programmed to operate in different
modes, such as spike time-stamp recording, or continuous
recording on a duty-cycled basis. Future work reducing the
size and weight of NeuralWISP will help lead to the practical
deployment of wireless, battery-free neural recording systems.
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