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E-field Sensor Response to Non-conductive Objects
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Fig. 2. Response of electric field sensors to non-conductive materials (“di-
electrics™). For dielectric objects, sensor response is typically proportional
to object density, which could be another useful pre-touch cue.

Fig. 3. Electric field sensor board installed in robotic fingertip.

dielectric constant of an object is proportional to density.
Fig. 2 compares the response of various dielectric objects to
a conductor. Some of the dielectric objects work quite well.
The ones that do not are very low density.

2) Electric Field Sensing Instrumentation: To enable the
robotic hand and arm to perform electric field sensing, the
three fingers of the Barrett Hand were replaced with 3D-
printed plastic replacements containing custom sensor boards
and electrodes (both our own design). Fig. 3 shows a sensor
board installed on the robot. The new sensor hardware is
entirely contained within the plastic finger (slightly larger
than a human finger, but the board layout could be altered
to fit a human-scale hand.) An additional sensor board was
also placed in the palm of the hand to provide another
transmit channel. None of the sensing hardware described
in this paper has been published before; in our prior work,
we used sensor boards that were too large to be mounted in
the fingers, so only the electrodes were in the fingers. With
the old hardware, it was impractical to mount the EF sensing
hand, cabling, and sensor electronics on the WAM arm.
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Fig. 4. Finger electrodes attached to bottom of sensor board.

3) Electrode design: The complete hand setup is capable
of making 18 distinct measurements, each consisting of a
transmit/receive pair. The receive electrodes are located at the
tips of the fingers, and are split into left and right receivers.
This provides separate measurements for the left and right
sides of the finger, giving the robot more information about
the precise location of the object. Two transmitters are
located along the inner surface of each finger. The placement
of transmit electrode that is used determines the range of the
measurement. The one closest to the receivers provides a
short-range measurement with high resolution but is limited
to sensing about two centimeters away. The other transmitter
in the finger, which is farther away from the receivers,
provides mid-range measurements, with a range of about five
centimeters. The transmit electrode in the palm can also be
used to transmit to the fingertips, and provides a long range
measurement, about 10 to 15 centimeters.

For each finger, it is possible select from a long, medium,
and short range transmitter, and each finger has a left
and right receiver, yielding 6 measurements per finger x 3
fingers = 18 possible measurements total.)

Fig. 4 shows the electrodes in the fingers. Figs. 5 and 6
show calculated iso-signal surfaces generated by the mid-
range and long-range electrodes for a small test object. The
iso-signal surfaces are computed by simulating the effect of
a particular small test object on the sensors. An iso-signal
surface is a set of locations of the test object at which the
sensors return a particular single value.

B. Actuation

1) Reactive control of WAM arm: The WAM arm is
controlled by a real-time Linux PC (wambox) that provides
updates at 500Hz. The sensing, inverse kinematics, and
application logic execute on another PC (wamclient) that
connects to wambox by a network interface. Because of
the time requirements for sensing and IK computations,
wamclient provides updated commands to wambox at
only around 20Hz. It is necessary to upsample from this
slow, irregular set of commands to generate a set of smooth,
regular commands at 500Hz.
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still and spread apart to give maximum position diversity.
The long range sensor readings are used to create control
signals in the frame of reference of the hand, and the arm is
actuated via inverse kinematics. Three separate PID control
loops control the motion in the three Cartesian coordinate
directions in the hand frame. The controller in the Y direction
acts to reduce the magnitude of the difference between the
sensor readings in fingers 1 and 2. When the difference
is zero, the distance between the object and the sensors is
equal, and the object is centered between fingers 1 and 2.
Similarly, the controller in the X direction acts to reduce the
magnitude of difference between the finger 3 sensor reading
from and the average of the finger 1 and 2 readings. The
X and Y controllers act independently of one another. A
third controller in the Z direction acts to drive the average
of all three sensor readings to a predefined set point, and
thus position the hand the desired distance from the object.
This controller is suppressed while the X and Y controllers
are moving the hand to help assure that the hand does not
bump into the object as it its moving toward it.

3) Finger encoder-based wrist rotation: The rotational
asymmetry of the current finger position is computed by
subtracting the encoder value for finger 1 from the encoder
value for finger 2. This value is used as the input to a
proportional controller that rotates the wrist in order to
reduce the asymmetry of the two finger configurations. This
technique was introduced in [6]. This finger encoder-based
wrist servoing has the effect of orienting the hand to be
parallel with the object (for various simple object shapes;
the result of this rotational servoing is harder to characterize
for complex object shapes.)

4) Arm servo control using finger encoders as sensor
inputs: This mode generalizes the wrist servoing described
above. The arm translates the hand, as in the arm servoing
section above, but the “sensor” inputs are the finger encoder
values, which in turn are set by the pretouch servoing
technique. Thus in this mode, the E-field sensors do not
directly affect the arm state, but do so indirectly through
the finger joint angles. !

In this control mode, the arm is positioned near an
object to be grasped, and the finger preshape controllers (as
described above) are started. As the fingers preshape, the
encoder positions of each of the fingers are used as inputs
to control the velocities of the arm in order to align the
arm with the object and make the finger configuration more
symmetric. This helps ensure that when the final gripping
force is applied the object will not be displaced or rotated.

5) Finger encoder-based wrist translation: The transla-
tional asymmetry along the X-axis in the hand frame is

1The advantage of this approach is that it removes uncertainty and
complexity associated with the non-linear response of the sensors. As long
as a particular setpoint (call the setpoint a null, without loss of generality)
can be detected reliably by the sensor values, then the control signal (finger
joint angle) needed to cause the null can be used as a sensor value, and
one that may be more linear than the underlying sensing mechanism used
to detect the null. This principle is used in fluxgate magnetometer sensors,
whose “sensor” output is actually the control value used to null a reading
on a raw (highly non-linear) magnetic field sensor.

computed by subtracting the average encoder positions of
fingers 1 and 2 from the encoder position of finger 2. This
value is then used as the input to a proportional controller to
obtain the X component of the velocity in the hand frame.

IV. EXPERIMENTAL RESULTS
A. Human-robot object transfer

We have used EF Pretouch to implement human-to-robot
object transfer. The human brings an object in the vicinity of
the hand’s long-range sensors. When the object is detected,
the arm begins servoing in 3 dimensions to bring the hand
into alignment with the object. (For this experiment, we
arbitrarily chose an orientation for the hand. The hand main-
tains its fixed orientation, servos in X and Y to maximize
alignment with the object, and moves in and out in Z to
maintain a particular distance to the object.) The Y error
signal is the difference of the finger 1 and finger 2 long range
sensor readings. The X error signal is the difference between
the finger 3 sensor value, and the average of the finger 1
and finger 2 readings. When the arm is aligned with the
object and the object is stationary, the system switches into
grasping mode. The arm remains stationary, and the fingers
pre-shape to the object. When the fingers are stationary (and
in a symmetrical configuration) grasping is initiated. The
grasping procedure uses the hand’s EF sensors, strain gages,
and encoders together to execute a reliable grasp, and detect
grasp failure.

Once the robot hand has reliably grasped the object, it
waits for the human to let go. This capability is what we
described earlier as co-manipulation state measurement. If
the human fails to release the object, the robot issues a verbal
reminder: “You can let go now.” Once the human lets go,
the arm moves the object to another person in a pre-defined
location. It prompts the person to take the object, and then
waits. Co-manipulation contact detection is again used to
decide when the robot hand should release the object.

The grasp control procedure is a combination of force
and position control. As part of the grasping process, we
want to detect contact with as much sensitivity as possible.
In other words, we want to detect small amounts of force.
EF Preshaping allows us to use the strain gages with more
precision than would be straightforwardly possible otherwise.
The strain gages in the Barrett Hand fingers are affected
by gravity, which can function as noise if not properly
compensated, and also are subject to drift (an additional
source of noise). If we were to set a contact force threshold
to detect light contact of the fingers with the object, but were
uncertain about the effect of gravity on the sensors, then we
would have to set the contact force threshold higher. Since
the target point of the E-field finger servoing procedure is
close to the contact configuration, the effect of gravity will
be similar in the two cases. Thus the strain gages can be read
when the finger has preshaped to the object, but has not yet
attempted to grasp it. Thus, when the fingers first make light
contact with the object, this can be detected by looking for
changes in the baseline strain value collected at the E-field
servoing target point.
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Outer Boundary of Can Placements with Reliable Grasping

Fig. 11. “Basin of attraction” for successful object pick up. The hand
always starts in the position and orientation shown, in the center. A can
placed anywhere inside the red polygon will be found and picked up by the
hand. A can outside the red polygon will not be detected and picked up.

D. Second stationary object pick up experiment

In this experiment, we developed a procedure that uses
the encoder values of the fingers as the finger preshape
controllers execute as sensor inputs to control the arm and
position the hand so that the resulting grasp is symmetric.
Since only the mid- and short-range sensors are used, the
ground coupling state of the object has little effect and the
same procedure can be used for both electrically floating and
grounded objects.

When the robot is to pick up an object, the arm is moved to
a position near the object to be grasped. This position might
come from a vision system such as [3], from user input via a
laser pointer [12], or from a plan generated using a model of
the environment, as in [13]. With a mobile robot, the actual
position of the object relative to the hand might be offset by
actuation and sensing errors or uncertainties in the model.
In our preliminary experiments, the arm executed a preset
trajectory to a specific location, and errors were simulated
by moving the object.

To execute successful grasps despite these errors and
uncertainties, the following procedure is used. First, the
preshaping controller (as described in section Il1-C.1) is
started using the mid-range sensors with setpoints that will
keep the fingers a few centimeters from the surface of the
object. A limit is also set on the maximum position to which
the fingers may close to prevent them from closing too far
prematurely and getting in the way as the arm is moved to
be centered on the object. Once the error of the preshape
controllers drops below a set threshold, the controllers for
the rotation and translation of the wrist (described in Sec.
I11-C.3 and 111-C.5) are run to optimize the symmetry of the
grasp.

Once all of the controllers have stabilized and the arm has
come to a stop, the preshape controllers switch to the short-
range sensors with setpoints that will bring the fingers within
a few millimeters of the object’s surface. The controllers are
allowed to stabilize again before the hand is commanded to

close the remaining distance and apply gripping force. The
strain gages in the fingers are used to estimate and record
the encoder values at the point of contact, which can be used
later to determine whether the fingers slipped.

We tested this procedure by picking up a juice bottle and
a banana. The same control algorithm was used in both
cases. The hand approach vector was manually provided in
advance; the same approach direction would not have worked
for both objects.

1) Integration into mobile manipulation platforms HERB
and MARVIN: The EF sensors are mounted on HERB,
the Intel Labs Pittsburgh mobile manipulation platform.
Preliminary experiments allowed us to exercise end-to-end
system functionality. With further tuning and integration, it
should be possible to use the E-field pretouch servoing on the
HERB platform. HERB has cameras and laser rangefinders
which can handle the long range measurements.

Note that the vision algorithm [3] currently used by
HERB requires a model of any objects whose pose is to
be estimated. In situations where object models are not
available, getting accurate shape and pose information from
vision is more difficult. In cases like these, the vision signal
could do relatively simple blob tracking to crudely estimate
the position of unknown objects; the E-field Pretouch could
take over for the final manipulation steps.

V. DISCcUSSION AND FUTURE WORK

Our implemented system was able to pick up an object it
was tuned for (a can), and also succeeded with an apple,
which it was not tuned for. In a later experiment using
simultaneous arm and finger servoing, it was able to pick up
both a juice bottle and a banana, though different approach
angles were required.

The system would certainly fail for objects that are dras-
tically different in size from those it was tuned for. More
general approaches to interpreting the sensor data are needed
to allow the system to succeed with a much wider range of
object geometries.

For example, currently, as the hand moves into a grasping
position, we avoid needing to know the ground coupling
of the object by ignoring sensor readings when they are
in a regime that may be sensitive to this parameter. By
combining a time history of the sensor readings and their
locations with a model of the sensors, it should be possible
to construct and maintain a state estimate of the object that
includes its approximate dimensions, position, and ground
coupling using optimal estimation techniques (e.g. Kalman
filtering), which would enable more robust and general
grasping capabilities.

Beyond simple estimates of object dimensions (which
might be sufficient for grasping in some cases), a series of
measurements could be interpreted to extract more detailed
object geometry, which would allow successful grasping for
an even larger class of objects. An interesting question for
future work is when should primary sensor values (such as E-
field sensor readings) be used, and when should secondary
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1. Hand approaches object with fingers open

2. Fingers preshape to object and wrist is translated and rotated
to make grasp symmetric

3. Final preshaping is done with short-range sensors and fingers
apply grasping force

4. Object is lifted from the table

Fig. 12. The EF Pretouch-based procedure picking up an orange juice
bottle, and a banana. The same control algorithm is used in both cases.
The difference between the two cases is the hand approach vector, which
we provided manually in this case. In a full working system, the approach
vector could be provided by a vision system and a planner, or by human
input.

sensor values (such as encoder values for fingers that are
servoing to null an error signal in a primary sensor).

More general approaches should also enable the system
to operate successfully when multiple objects are present.
The system described here would fail when presented with
multiple objects.

More sophisticated state estimation approaches would also
likely allow faster, as well as more general and reliable
grasping. By considering many sensor measurements jointly
(for example, a time series of sensor measurements collected
as the hand approaches the object) it should be possible to
produce more accurate state estimates, and thereby speed the
grasping process.

Exploring the use of EF pretouch with non-conductive
materials is one avenue for future exploration. Combining EF

with optical pretouch [6] should allow a very wide range of
materials to be sensed. The combination of sensing methods
should also allow some information about material properties
to be inferred.

An important step for a useful mobile manipulation system
will be to combine with long range sensing modalities such
as camera, laser range finder, or RFID. We demonstrated that
the E-field Pretouch can guide the hand the object from a
distance of about 12 cm; future useful systems will need
other long-range mechanisms to get the robot hand within
the 12 cm basin of attraction.

Another important future step is to integrate the sensors
into a full, working mobile manipulation platform. In such a
setting, the benefits of EF Pretouch for overcoming additional
manipulation uncertainty caused by mobility can be tested.

Videos illustrating the systems described in this
paper are available at  http://www2.seattle.intel-
research.net/“jrsmith/icralOEF/.
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